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A procedure is presented for combining in reciprocal space the information contained in protein 
structures which have beer~ independently determined by multiple isomorphous replacement (MIR). 
Application of this method to the two crystal forms of yeast hexokinase B which have been solved at 
3"5 A resolution results in an electron density map that is a striking improvement over either of the two 
MIR maps or the map obtained by simply averaging the MIR maps in direct space. The background 
is lower, the apparent resolution is higher and most importantly, side chains are visible in this new 
hybrid map where none exist in either of the MIR maps. The method consists of determining a linear 
transformation matrix and vector relating the subunits of the two crystals, orienting the electron 
density map of one crystal form in the unit cell of the other and transforming this map to produce a 
set of calculated phases and structure-factor amplitudes. These calculated phases from the first crystal 
are then combined with the MIR phases of the second to produce a hybrid phase set which is used to 
calculate a new electron density map. 

Introduction 

Very often it is necessary to improve the electron den- 
sity map of a protein which has been produced by the 
multiple isomorphous replacement (MIR) method 
(Green, Ingram & Perutz, 1954; Blow & Crick, 1959). 
In the absence of additional suitable heavy-atom de- 
rivatives, several methods for improving the Fourier 
map have been proposed and used. These include: (1) 
Averaging of the electron density of identical subunits 
related by non-crystallographic symmetry (Matthews, 
Sigler, Henderson & Blow, 1967; Muirhead, Cox, 
Mazzarella & Perutz, 1967; Buehner, Ford, Moras, 
Olsen & Rossmann, 1974); (2) Application of the tan- 
gent formula or related direct methods to refine the 
MIR phases (Reeke & Lipscomb, 1969; Weinzierel, 
Eisenberg & Dickerson, 1969; Hendrickson, 1973; 
Sayre, 1972); (3) Difference-Fourier and least-squares 
methods of refinement of protein coordinates (Waten- 
paugh, Sieker, Herriott & Jensen, 1973; Freer, Alden, 
Carter & Kraut, 1975); and (4) Electron density mod- 
ification procedures (Barrett & Zwick, 1971; Collins, 
1975). The first is useful at any resolution while the 
latter methods are successful at very high resolution 
or in the final stages of the structure analysis. 

Rossmann & Blow (1963) have pointed out that 
phase information can be obtained if two or more 
copies of a subunit (or molecule) are contained in the 
asymmetric unit of a crystal or if the molecule is found 
in more than one crystal form. Method (1) above, the 
averaging of electron density maps, is in fact one way 
of utilizing this information. We show here that signif- 
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icantly greater improvement in the resultant averaged 
electron density map can be achieved by combining 
the phases in reciprocal space and making use of the 
estimation of error in the phases being combined. This 
is particularly true if the electron density maps of a 
protein obtained in different crystal forms are of un- 
equal quality. 

We can consider three ways of combining the infor- 
mation from two different crystal forms. The simplest 
method is to average appropriately the electron den- 
sity maps. Then if N subunits are averaged, the signal- 
to-noise ratio will increase by at least 1/N if the maps 
are of equal quality. The second method is to perform 
the averaging operation as above and then, by taking 
the Fourier transform of the 'average' subunit, cal- 
culate a new set of phases. The electron density map 
which is obtained using these phases and one set of 
observed structure-factor amplitudes is superior to the 
simple averaged map. Bricogne (1974) has shown that 
this second method is in fact equivalent to a least- 
squares solution of the general 'molecular-replacement' 
phase equations in reciprocal space. 

The third method, which is the one we describe be- 
low, is a variation of the second. Instead of calculating 
the Fourier transform of the 'average' subunit, we can 
calculate the Fourier transform of one of the subunits 
(transformed into the Cartesian space of the other) to 
produce a set of calculated phases. Then these phases 
can be combined with the experimental phases and a 
map calculated with these hybrid phases. 

These three methods can be illustrated schematically 
for two subunits in two crystal forms. Let Q1 represent 
the electron density function for subunit 1 and Q; the 
electron density function for subunit 2 transformed 
into the Cartesian space of QI. Define T to be the 
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Fourier transform operator, then for method I: 

I. (Q)=½(Q, + Q~). 

The second method then is 

II. (Q) r-1 e(calc), F(calc) 

and e(calc), F(1, obs) ~ Q,+2, 

where c~(calc) is the set of calculated phases. Method 
III is then represented schematically as 

III. ~o~ r-* ~(2, calc), F(2, calc) 

f[e(1,obs), e(2,calc)], F(1,obs) 5_+. ~%ybrid, 

where here the phases are combined using some func- 
tion f Clearly with this method the function f must 
be chosen to take advantage of the information regard- 
ing the errors in the observed and calculated phases. 
One simple function that does this is described below. 
The advantages or disadvantages of method III in 
comparison to method II depend on the choice of this 
function. In this paper we demonstrate clearly that 
method III is better than I in improving the map. No 
comparison is made between methods II and III which 
we feel to be essentially similar except insofar as one 
has, by virtue of defining the function f, somewhat 
more flexibility in manipulating the phase information 
with method III. 

Electron density maps have been obtained by the 
MIR method for two different crystal forms of yeast 
hexokinase B at high resolution (Fletterick, Bates & 
Steitz, 1975; Fletterick, Anderson, Anderson & Steitz, 
1976). One crystal form, BIII, contains one monomer 
of molecular weight 51000 per asymmetric unit in space 
group P2,2,2, while the other crystal form, BII, con- 
tains one dimer per asymmetric unit in the same space 
group. To 3.5 A resolution the phases for the BIII map 
show an average figure of merit of 0.78 while those 
for the BII map show only a 0.65 average figure of merit. 
Suitable averaging of electron density maps (method 
I), of these two crystal forms produces an 'average' 
map which is better than the BII MIR map but worse 
than the BIII MIR map. We show here that combining 
the structural information by a properly weighted aver- 
aging of MIR phases in reciprocal space results in an 
average electron density map which is superior to either 
the BIII or BII MIR map. 

Summary of the method 

Before this phase combination method and its applica- 
tion to hexokinase are discussed in detail, a brief out- 
line of the procedure is given. For the general applica- 
tion of the method consider the case in which two crys- 
tal forms exist, each with one subunit in the crystal- 
lographic asymmetric unit. After the matrix and vector 
relating the subunits in the two crystals have been 
determined, the electron density of the first subunit 
(S1) is oriented into the space of the second ($2). 
Phases ~(calc)sl can be calculated from S 1 oriented in 

the space of $2 with the fast Fourier transform (FFT) 
and combinedusing suitable weighting with the MIR 
phases a(MIR)s2 to produce hybrid phases and a cor- 
responding electron density map. The essential stages 
of this method are: 

(1) The linear transformation relating subunits S1 
and $2 is calculated. This can be achieved by using the 
rotation and translation functions (Rossmann & Blow, 
1962), by an analysis of the corresponding heavy-atom 
sites found for S 1 and $2, or by direct visual inspec- 
tion of the two Fourier maps. 

(2) This preliminary linear transform is then refined 
in real space to maximize the overlap of the $2 electron 
density map with that of S 1. 

(3) The S 1 electron density map is modified so that 
the electron densities of the solvent regions are set to 
a uniform background level. The neighboring molecule 
fragments are also removed so that the S1 electron 
density map contains only one complete subunit. 

(4) The refined matrix and vector relating S1 and 
$2 and the symmetry operators of the $2 crystal form 
are used to construct an electron density map in the 
space of $2 but with the subunit density distribution 
of $1. 

(5) The FFT algorithm is used to transform this map 
in order to produce a new set of phases, cffcalc)s,, and 
structure factors F(calc)s,. 

(6) The calculated phases, a(calc)s,, are combined 
with the observed phases, cffMIR)s2 to give hybrid 
phases making use of the figure of merit as an estimate 
of the error in the a(MIR)s2 phases and the agreement 
between F(obs)s2 and F(calc)sl as an estimate of the 
error in a(calc)s, phases. 

(7) An electron density map is calculated using these 
hybrid phases and the observed structure factors 
F(obs)s2. 

The method in detail 

Relation of subunits 
We shall now describe in more detail for each of 

the above steps the mathematical algorithms used to 
carry out this phase-combination procedure. The initial 
step, which is the determination of the spatial rela- 
tionship between the two subunits, can be done in a 
variety of ways, as mentioned above. Only one, the 
utilization of the heavy-atom positions will be de- 
scribed here. After the heavy-atom positions have been 
assigned to one subunit in each of the crystal forms, 
the intrasubunit distances between these heavy-atom 
positions are calculated. If a number of heavy atoms 
bind to the same location in both crystal forms, then 
the distances between these common sites will be the 
same. In this way, the heavy-atom sites in crystal one 
which have counterparts in crystal two can be iden- 
tified. In practice while four or five heavy-atom sites 
in common between the two crystal forms will suffice, 
eight to ten common sites will generate a more reliable 
linear transformation matrix and translation vector. 
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If xa represents the unit-cell fractional coordinates 
of the ith heavy-atom position in S 1 and x~2 represents 
the coordinates of the corresponding mate in $2, then 
the relationship of the heavy-atom positions in the two 
subunits S 1 and $2 is given by: 

Xi2 =AXll-k-T . (1) 

So that the rows of the matrix B are given by 

302 302 302 302 302 302 

302 302 3t..02 301 302; r302 
0z2 xl -~-2 yl ~z~ z~ 3x2 3y2 3z2" 

Here A is not a rotation matrix but rather is a 3 × 3 
linear transformation matrix of elements apa. T is a 
translation vector with elements t v. The linear least- 
squares fitting of equation (1) for the nine elements 
of A and the three of T, for the N observational equa- 
tions, will give starting values for the parameters which 
relate the two subunits. 

Stage 2 of the procedure is to refine the matrix A 
and the vector T in real space using the electron den- 
sity maps for each subunit. A similar scheme for this 
operation but using an Eulerian matrix has been given 
by Muirhead et al. (1967). 

The procedure presented here differs in that rota- 
tional constraints are not applied to elements of the 
transformation matrix A. By allowing for shears and 
expansions this modification makes the construction 
of the normal equations considerably simpler than for 
an Eulerian matrix and avoids possible degeneracies in 
the solution vector. Our experience with this method 
as outlined below shows that elastic deformations of 
the electron density map are not observed. 

Here we wish to shift the elements apq and t v in such 
a way as to minimize the difference in the electron den- 
sity between corresponding points in the two electron 
density maps of S 1 and $2, that is, we wish to mini- 
mize the function 

~ = 01(Xl) -- 02(X2) (2) 

for a suitable large number of grid points, xl, where 0 
represents the electron density distribution function. 
Define C to be the 12-element vector of shifts in the 
elements of A and T so that the density at the new 
point, x~, is given by 

02(Xi) = 02(X2) -[- B e ,  (3) 

where for m observations the matrix B is of order 
m x l 2 .  

Muirhead et al. (1967) have shown that the solution 
for the parameter-shift vector is given by 

The calculation of the elements of B from the electron 
density map for $2 is straightforward. For example: 

302 3Xz 302 3y2 302 3z2 302 
B l l -  3x2 3all + 3y---2 3al---1- + 3z2 3all - 3x2 x t ,  

3x 2 
since w--- = xl and the other terms vanish. 

call 

Maximizing the overlap in electron density between 
S1 and $2 produces a suitably accurate linear trans- 
formation matrix and vector. 

Electron density map modification 
In order to place the electron density distribution 

for S1 into the space of $2, the map of S1 must be 
modified to contain only the electron density for the 
subunit. That is, the electron density of solvent regions 
and the molecular fragments from other symmetry- 
related subunits must be set to a uniform background 
level. This can be done by a visual inspection of the 
map and constructing a circumscribing polygon which 
coarsely outlines the subunit boundary. The set of 
polygons (one for each map section) is then used as a 
boundary such that all the electron density at points 
outside this boundary can be set to the average back- 
ground value of the solvent region. 

The polygon must be chosen so as to exclude all 
neighboring molecular fragments and not remove den- 
sity from the subunit of interest. An exact outline is 
not critical because, provided this requirement has been 
met, all unwanted structural information has been ex- 
cluded. It is of no consequence that low-density solvent 
regions might be included inside the bounding polygon. 
This was the case in our application to hexokinase 
where we found considerable decrease in background 
for relatively extensive regions of solvent regions which 
were included within the bounds of the subunit. In 
practice a ten-sided irregular polygon is more than 
adequate to exactly isolate the molecule. Because there 
are generally very large intersubunit solvent regions in 
protein crystals and relatively few intimate contacts 
between the subunits this isolation procedure is not 
difficult for a map of even moderate to poor qual- 
ity. 

The final map modification is to construct an elec- 
tron density map of a full unit cell in $2 space con- 
taining the S 1 density distribution. This is readily ac- 
complished using the refined linear transformation and 
the space-group-symmetry operators in the crystal 
form of $2. The FFT algorithm is then used to trans- 
form this map and produce a set of calculated phases, 
~(calc)sl, and calculated structure-factor amplitudes, 
F(calc)sx. 

Phase combination 
The optimal method for combining these calculated 

phases with the observed MIR phases would be to 
multiply the total observed phase probability profile 
for each of the experimental MIR phases by a cal- 
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culated Gaussian phase probability profile determined 
for each of the calculated phases (Rossmann & Blow, 
1961; Hendrickson & Lattman, 1970; Hendrickson, 
1973). The centroid phase from this joint probability 
profile could then be appropriately weighted and used 
as the hybrid phase. 

We have used a computationally simpler method for 
the phase combination which takes advantage of the 
estimated phase errors from the two sources of MIR 
phase information. The figure of merit, m, is a sensitive 
indicator of the relative error for the $2 MIR phases, 
a(MIR). The quantity r= lF(obs)sz -F(ca lc ) sd /  
IF(obs)sz+F(calc)stl was chosen to estimate the rela- 
tive error in the calculated phases, c~(calc)sl. The details 
of the method in which the phases were combined and 
the justification are described below. 

Application to hexokinase 

This method of combining the information from in- 
dependent determinations of the same structure has 
been successfully used to improve the electron density 
maps of two different crystal forms of yeast hexokinase 
B. Table 1 presents a summary of some crystallographic 
parameters for two orthorhombic crystal forms of yeast 
hexokinase B. Crystal form BII contains two subunits 
in the asymmetric unit (Anderson et al., 1974) and 
form BIII contains one subunit in the asymmetric unit 
(Fletterick et al., 1975) so that there are three inde- 
pendently phased structure determinations of the hexo- 
kinase subunit. The following gives the descripti 3n of 
the methodology used to isolate the BIII subunit, $3, 
and to place the $3 electron density in the positions of 
the two subunits (S 1 and $2) in crystal form BII, and 
the subsequent applicati3n of the fast Fourier trans- 
form and phase combination. 

Table 1. Hexokinase crystallographic data 

Crystal Cell Refinement 
form constants Space group parameters 
BII a= 144-2 ~ P212~2t Five heavy-atom 

b-- 87.4 Two 51000 m.w. derivatives 
c= 9 9 . 4  subunits/asym. (m)---=0"67 
V= 1-25 X 10 6/~3 unit 3"5 A resolution 

BIII a= 166.5/~ P2~2t21 Seven heavy- 
b= 59-2 One 51000 m.w. atom derivatives 
c= 5 8 - 5  subunit/asym. (m)~0.78 
V= 5"99x 105/~s unit 3"5 A resolution 

In the crystal form BII the trial matrix and vector 
relating the two subunits of the dimer (S1 and $2) 
were determined using equation (1) to relate eight 
heavy-atom positions in one subunit to the equivalent 
eight heavy-atom positions in the second subunit. The 
root-mean-square distance between the observed posi- 
tions and those calculated using the matrix and vector 
for these eight sites was 1.09 A. The relationship be- 
tween S1 and $3 was determined in the same way but 
with six heavy-atom positions that were found to oc- 
cupy similar positions of the protein subunit in the two 

crystal forms BII and Bill.  The root-mean-square dis- 
tance between the six observed and calculated sites in 
this case was 1.0 A. 

The matrix that relates the two subunits in the asym- 
metric unit of form BII was then refined using 1000 
randomly selected grid points of moderate to high 
electron density within the S1 subunit of the 3"5 A 
electron density map. The gradient calculation was 
limited to 1000 points instead of the entire subunit ar- 
ray because this calculation proved to be computa- 
tionally the most time consuming. The electron density 
gradient was calcalated at each of these grid points by 
evaluating the electron density at 1 A intervals in the 
three perpendicular coordinate directions. The electron 
density was estimated with the use of an eight-point 
linear interpolation between S1 grid points in three 
dimensions. Three cycles showed that the refinement 
had converged to give negligible shifts in the elements 
of the A matrix and T vector. The convergence of this 
refinement was further checked by careful visual com- 
parison by superposition of each of the rotated den- 
sity-map sections for $2 with the unaltered map of S 1. 
No systematic errors in the transformation parameters 
or distortions of the electron density were found. The 
two subunits of the dimer, S 1 and $2, were found to 
be related by a 156 ° rotation and a 13.8 A translation 
along the rotation axis. The subunit electron density 
map of $2 was next rotated and translated so as to 
superpose with the S 1 density and the average density 
was taken. Electron density at non-integral lattice 
points was estimated using an eight-point linear inter- 
polation. This step produced a more noise-free S 1 den- 
sity map for the next step in the refinement. 

The matrix relating $3 and S1 was refined in the 
same way with the averaged map in the S1 position. 
Four refinement cycles were necessary for convergence. 
Once again a visual comparison of the rotated and un- 
altered map sections superposed showed no errors or 
distortions. In this case a rather more substantial 
change in the transformation parameters was observed 
than for the case relating S 1 to $2. 

The electron density of the monomer ($3) was iso- 
lated from the rest of the Bill  electron density map by 
tracing a decagon around the molecule on each of the 
48 Fourier map sections. The boundary in most cases 
was placed more than 5 A from density features as- 
signed to the subunit. The separation between sub- 
units in the crystal is obvious in all areas of the map. 
All density outside this boundary was set to zero, the 
average electron density of the unit-cell. The map of 
$3 was then placed in the two positions occupied by 
S1 and $2 subunits in crystal form BII and an entire 
unit cell was generated with the BII space-group-sym- 
metry operators. 

Before the thre~ subunits in real space or reciprocal 
space were averaged, it was necessary to show that their 
tertiary structures are the same. This was checked by 
visual comparison of the structures of the MIR- 
phased electron density distributions of each of the 
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three subunits rotated into the space of BIII (Figs. 3 
and 4) and by subtracting the subunit density maps 
pairwise and looking for any extensive regions of dif- 
ference density. These difference maps showed that the 
tertiary structures of the subunits are identical at 3.5 A 
resolution in most regions, although there are indeed 
some small tertiary structural differences between the 
three subunits, particularly at the dimer interface. 

Since the electron density map has only been inter- 
preted in terms of a polypeptide backbone, analysis 
of the difference electron density maps between the 
various subunits has not been complete or quantitative. 
A few side chains at the subunit interface move by 
several Angstroms. Variation in the positions of some 
of the polypeptide backbone on the surface or at the 
subunit interface may be as large as an Angstrom, but 
most differences in structure would appear to be sub- 
stantially less. We did not attempt to analyze possible 
alternative positions for side chains in the subunits. 
The structural differences will be described elsewhere 
(Fletterick et al., 1976) since they are sufficiently 
small that they will not affect the results being presented 
here. 

The Fourier transform of $3 density in the BII cell 
was calculated to produce F(calc)s3 and 0c(calc)sa. The 
grid intervals used in calculating the fast Fourier trans- 
form satisfy the sampling criterion proposed by Col- 
lins (1975). The number of grid points along the cell 
axes in crystal form BII was 128, 64 and 64 for x, y 
and z, respectively. 

The F(obs) for BII were scaled to these calculated 
structure-factor amplitudes with a temperature factor 
of B = 30.1 A 2 applied to F(calc). This value of B cor- 
rects for the different rates of fall-off with sin 0/2 of 
the observed structure amplitudes for the two crystal 
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Fig. l. The phase difference, A==(lc~(obs)-~(calc)l) in 

degrees between the observed MIR phases for BII and those 
calculated from the BIII electron density. The dashed line 
shows the phase differences as~ a function of the quantity 
r= [F(obs)- F(calc)l/lF(obs)+F(calc)] for those BII MIR 
reflections having a figure of merit greater than 0.9. As 
expected, the agreement between observed and calculated 
structure factors is correlated with the agreement between 
the observed and calculated phases. The solid line shows the 
phase difference between observed and calculated phases as 
a function of figure of merit for all reflections. Again, the 
figure of merit is correlated with phase error, as anticipated. 

forms and the opposite effect of the figure-of-merit 
weighting used to compute the BIII electron density 
map. The residual, R = 2~.[F(obs)-  F(calc)[/~[F(obs) 
+F(calc[, was 0.57 at 10 A resolution and smoothly 
varied to 0.34 at 3-5 A resolution. The R value for all 
8600 reflections was 0.38. It is interesting to note for 
comparison that the R value between BIII F(obs) and 
BIII F(calc) was 0.33. In this case F(calc) was com- 
puted by applying the fast Fourier transform to the 
BIII crystal form with the electron density of the sol- 
vent regions set to zero. We conclude from the cal- 
culated R values then that the refined linear transforma- 
tion relating S1 to $3 was sufficiently accurate and 
that the subunit tertiary structure is homologous in the 
two crystal forms. 

Phase combination 
In order to combine the observed MIR phases with 

the calculated phases, it is necessary to make use of 
the estimated errors in these phases. The figure of 
merit, m, indicates the relative error in the BII MIR 
phases, c~(MIR). The quality r, which measures the 
agreement between the observed and calculated struc- 
ture factors, was chosen to measure the relative error 
in the calculated phases, ~(calc)s~. Fig. 1 shows a plot 
(dashed line) of r versus the phase difference (A~) be- 
tween the calculated phases and those observed phases 
having a figure of merit larger than 0.90. The phase 
difference, A~ =~(obs) - ~(calc) generally increases for 
increasing values of r. Assuming the observed phases 
of m_> 0"9 to be relatively error free, it can be seen 
that the calculated phases for r greater than about 0-4 
to 0.5 have a 60 ° to 75 ° phase error. Fig. 1 also shows 
the variation between the observed and calculated 
phases as a function of the figure of merit of the MIR- 
phased reflections. This demonstrates that while the 
phase change is quite large, the smallest phase changes 
are associated with high figure of merit reflections. 

Based on the data in Fig. 1 the following four cases 
were defined for purposes of combining the phases. 
Case 1: for r>0 .5  and m >0.6 the reflection was not 
used (530 reflections). Case 2: for r<0 .5  and m<0 .7  
the ~(calc) (3500 reflections) phases were used with a 
figure of merit of 1-0. Case 3 : r > 0 - 5  and m>0"6 the 
figure of merit weighted c~(obs) from MIR were used 
(920 reflections). For the remaining data (4650 reflec- 
tions) with r <  0.5, and m > 0.7, a weighted average of 
the e(obs) and e(calc) was used. The combination 
scheme in this case allowed the ~(obs) phase to rotate 
in the direction of e(calc) by an amount fAc~ where f 
was constrained to fall in the range (0-25-0.75). The 
magnitude of this fractional rotation,f,  was determined 
from the function f =  1.33 - 0 . 5 r -  0-83m. 

Using this functional form for f,  with m =  1.0 and 
r =  0.5, the observed phase (presumably more reliable), 
c~(obs), rotates in the direction of c~(calc) by  an amount 
0.25 Ac~. With m =0"7 and r=0 .0  (the calculated phase 
presumably more reliable), cffobs) rotates in the direc- 
tion of e(calc) by an amount 0.75 Ac~. At other values 

A C 32A - 9 
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of r and m for this case f will take on an intermediate 
value between 0-25 and 0.75. For r=0.5 and m--0-7, 
for example, f=0-5 and the resulting phase is midway 
between ~t(obs) and ~(calc). The phase change relating 
these hybrid phases to the original MIR phases is 
shown in Fig. 2 by the dotted line. The average phase 
change for the 8600 reflections was 50 ° which is very 
close to the average error in the MIR phases (48 °) 
predicted from the average figure of merit (0.67). 

Any errors in the linear transforms used to relate 
the three subunits or differences in the tertiary struc- 
ture of the three subunits would result in increasing 
phase differences between the BII MIR phases and the 
BIII calculated phases with increasing resolution. In 
order to evaluate these phase differences the BII MIR 
phases with high figure of merit were compared with 
the BIII calculated phases after the phase error esti- 
mated by the figure of merit had been subtracted from 
these latter phases. The dashed line in Fig. 2 is calculated 
by subtracting for each resolution shell the arccosine 
of the average figure of merit for the BIII phases from 
the observed phase change (smooth line) between the 
BII MIR phases with (m) > 0.9 and the Bill calculated 
phases. Since the phase difference is relatively fiat as a 
function of resolution, there is probably little system- 
atic error introduced into the calculated phase by er- 
rors in the linear transformation matrix or differences 
in tertiary structure. 

Results and discussion 

Our most striking result is that the electron density 
map obtained using these phase-combination proce- 
dures is a substantial improvement over either of the 
two MIR maps or the map obtained by averaging the 
two MIR electron density maps. The background is 
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electron density plot ted as a funct ion of  resolution.  The 
dashed line was obtained by subtract ing for each resolut ion 
shell the arccosine of  the BIII  average figure of  merit  f rom 
the points  on the solid line. 
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Fig. 3. A 6 A slice of  the BII MIR electron density map  with 
the two subunits  averaged in real space. The first con tour  
above zero has been omit ted.  

Fig. 4. A 6 A slice of  the BIII  M I R  electron density map.  

lower, the resolution is higher and most importantly, 
side chains are present in the map calculated with 
hybrid phases where none exist in either of the MIR 
maps. While a simple quantitative analysis of the de- 
gree of phase improvement achieved by these proce- 
dures is not possible, a qualitative assessment can be 
obtained by simply comparing each of the initial elec- 
tron density maps with the resulting electron density 
maps computed with the hybrid phases. 

In the following discussion we shall need to refer to 
five different electron density maps: the BIII MIR, 
BII MIR; the BII hybrid and BIII hybrid; and the 
BII-BIII average. The method used to calculate each 
of these maps was as follows: (1) the BIII MIR map 
was computed using the observed figure-of-merit- 
weighted structure-factor amplitudes for BIII and the 
associated MIR phases. (2) The BII MIR map was 
computed using the observed figure-of-merit-weighted 
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structure-factor amplitudes for BII and the MIR 
phases. After electron density maps had been calculated 
for each subunit of the dimer, the electron density dis- 
tributions were averaged. The electron density of the 
averaged subunit was rotated into the same orientation 
as observed for the BIII MIR map. (3) The BII hybrid 
map was computed using the observed structure am- 
plitudes for BII and the hybrid phases determined as 
described above. The electron density of the two sub- 
units was then averaged and again rotated into the 
same orientation as the BIII MIR map. Thus, the only 
differences in computation of the two BII maps are in 
the phases used. (4) The BIII hybrid map was com- 
puted using the observed structure amplitudes for the 
BIII crystal form and hybrid phases. These phases 
were calculated from the Fourier inversion of the BII 
hybrid map oriented in the space of BIII. These cal- 
culated phases were not combined with the BIII MIR 
phases. (5) The BII-BIII average map is the direct- 
space average of the BII and BIII MIR maps. 

In order to compare the quality of these maps, slices 
about 6 A thick from each of these five electron den- 
sity maps are shown in Figs. 3 through 7. The contour 
intervals were equally spaced for each map with the 
zero contour level omitted; in the BII MIR map the 
first contour level is also absent. A prominent ~ helix, 
50 A long, can be seen in each case in the lower third 
of the map. The dots on the two BII density maps rep- 
resent u carbo] positions determined from interpreta- 
tion of the 2 .TAresolu t ion  BIII MIR electron density 
map (Fletterick et al., 1975). These ~ carbon positions 
were plotted on the BII electron density maps in order 
to check the accuracy of the linear transformations re- 
lating the subunits and the degree of similarity of the 
tertiary structures. 

A comparison of the BII MIR map and the BIII 
MIR map (Figs. 3 and 4) shows that the two are of 
very different quality. Examination of the 50 A helix 
in particular shows that the BII MIR map is of much 

, , ~ o ' i f 3  ' 

Fig. 5, A 6 A slice of  the real-space average of  the BIII  map  
with the BII M I R  map.  

~ ' ~  ' ~  ~ ¢¢~ - I 
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Fig. 6. A 6 A slice of  the BII electron density map  calculated 
with hybrid phases. 

Fig. 7. A 6 A slice of  the BIII electron density map  calculated 
with hybrid phases. Several side chains (arrowed) which a r e  
visible in this map  do not  appear  in any of  the previous maps.  
Also, the long ct helix is better resolved. 

lower resolution than the BIII MIR map even though 
both are calculated from data extending to 3.5 A res- 
olution. This is due to the much higher overall tem- 
perature factor exhibited by the BII structure factors, 
and the much poorer M I R p h a s i n g  of the BII ampli- 
tudes between 3-5 and 4.5 A resolution (Fletterick et  
al., 1976). The BII MIR map appears to have a lower 
background because the densities of two subunits of 
the dimer have been averaged and because the first 
contour has been omitted. However, the ~ helix more 
nearly resembles a low-resolution rod of electron den- 
sity with no side chains, instead of the helix of back- 
bone density with periodic side chains seen in the BIII 
MIR map. 

The object of the phase-combination procedures de- 
scribed here has been to reduce the obvious noise in 
the BIII MIR map without losing the higher-resolu- 

A C 32A - 9* 
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tion information which it contains. This goal is not 
achieved by the usual method of simply averaging the 
electron density maps. For although the BII-BIII aver- 
age map shows higher resolution and better polypep- 
tide chain continuity than the BII MIR map, it is not 
an improvement upon the Bil l  MIR map (Fig. 4). This 
average map is of considerably lower resolution than 
the BIII MIR map. 

The BII hybrid map in which the combined or hybrid 
phases are applied to the BII observed amplitudes is 
a considerable improvement over the BII MIR map in 
both resolution and continuity of electron density. Al- 
though this map is not as well resolved as the BIII 
MIR map, it was in fact easier to trace through the 
course of the polypeptide backbone. In comparing the 
c~ carbon markers obtained from an interpretation of 
the BIII 2.7 A MIR map with the electron density in 
the BII hybrid map, they were found to generally lie 
inside an area of non-zero density. In a few cases, how- 
ever, it was found that an error had been made in 
tracing through a loop of chain near the surface of the 
protein in the Bil l  2.7 ,A, MIR map. The BII hybrid 
map was so much better that it was clear that in a few 
places we had interpreted a few side chains as the main 
chain in the 2-7 2( map. No changes in the general 
course of the polypeptide backbone were found, how- 
ever, after careful inspection of the BII hybrid map. In 
contrast to the MIR maps, there were no difficulties 
in tracing through the course of the polypeptide back- 
bone in the BII hybrid map. 

Comparison of the BII-BIII average map and the 
BII hybrid map shows rather subtle differences. The 
hybrid phase map, however, appears to be somewhat 
better resolved and the density of recognizable features 
is better shaped. 

The comparison of Fig. 5, the BII-BIII average 
map, with Fig. 7, the Bill  hybrid map, clearly demon- 
strates that reciprocal-space phase averaging is pre- 
ferred to a simple real-space average. The background 
is lower, the apparent resolution is higher and the map 
is far easier to interpret. 

The comparison of the BIII hybrid map with the 
BII hybrid map in Figs. 6 and 7 shows the BIII hybrid 
map to be of significantly higher apparent resolution. 
Since these two maps were calculated with essentially 
the same hybrid phases, the rapid fall-off of the F(obs) 
with increasing resolution for the BII crystal form is 
responsible for this phenomenon. It should be noted 
that a temperature factor of B =  30.1 A. was required 
to scale the F(calc) from the BIII crystal form to the 
observed structure amplitudes for the BII crystal form. 
Not only is the Bil l  hybrid map superior in resolution 
to both the BII hybrid and the BII-BIII average maps, 
but it is a striking improvement over the BIII MIR 
map. The background is lower, the resolution of the 

helix is higher and, most importantly, side chains are 
visible in this map where none exist in the MIR maps. 

In summary, we have been able to use the informa- 
tion contained in the two independent crystal struc- 

ture determinations to produce a map which is super- 
ior to either of the starting maps. 

The computational times on an IBM 370/158 com- 
puter involved in the various steps of the above anal- 
ysis were as follows: The CPU time required for one 
cycle of matrix refinement by the gradient technique 
was 2.5 min. The CPU time needed to isolate the sub- 
unit density, rotate the density distribution function, 
reconstruct the unit cell and calculate a set of hybrid 
phases was 12 min. 
Note added in proof: G. Bricogne has recently applied 
a similar but more r;gorous method of phase improve- 
ment to the solution of TMV coat protein and glycer- 
aldehyde 3-phosphate dehydrogenase (Bricogne, 1975a, 
b). 

We thank Charles Anderson and Wayne Anderson 
for discussions and help with this work. 
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